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A QUADRATURE FORMULA 
WITH ZEROS OF BESSEL FUNCTIONS AS NODES 

GEORGI R. GROZEV AND QAZI I. RAHMAN 

ABSTRACT. A quadrature formula for entire functions of exponential type where- 
in the nodes are the zeros of the Bessel function of the first kind was recently 
obtained by C. Frappier and P. Olivier. Here the condition imposed on the 
function is relaxed. Some applications of the formula are also given. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

If f is an entire function of exponential type 2T > O belonging to L1 (-oo, oo) 
then ([3]) 

00 7 00 ((2k - 1) 
(1) / f(x) dx = E f( k l)) 

o00 k=-oo 

where the series is absolutely convergent. 
If f belongs to L1 (-oo, oo) , then so do the functions (f(x) + f(-x))/2 and 

(f(x) - f(-x))/2. Since (f(x) - f(-x))/2 is odd, f f(x)dx is nothing but 
f?(f(x) + f(-x))dx. Hence (1) may be written as 

( 1' ) j (f(x)+f(-x)) dx = r (f((2k f) +f 2 ) 

Applying (1) to the function f(z) + f(-z), we see that in this form, the for- 
mula is valid even if f(x) + f(-x) belongs to LI [0, ox) without f being in 
Ll(-oo, oo). 

Let J,0(z) be the Bessel function of the first kind of order a'. We shall 
denote by jI(a), j2(a), ... , jk(a), ... the zeros of Z. in the right half-plane 
arranged in ascending order of magnitude. 

Recently, Frappier and Olivier [4] have proved the following result which we 
find very interesting. 
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Theorem A. If ?Ve a > -1, then the quadrature formula 

j x2a+l (f(x) + f(-x)) dx 

(2) _ 2 00 (2k(2))2 f k() f(Ik(a)"0 

Ta k=I (Ja(jk(a))) T T JJ 
holds for every entire function f of exponential type 2T such that f(x) = 

O(jxI-6), x -+oo with 3>291ea+2. 

Formula (2) reduces to ( 1') when a = -2 since 

i = -COS(TZ). 

However, in the case a - 2 formula (2) holds for every entire function f 
of exponential type 2T such that x2a+1 (f(x) + f(-x)) belongs to LI [0, o). 
It is therefore natural to wonder if the same can be said for other values of a 
too. We shall show that this is indeed the case if a is real and > -1 . To be 
precise, we have 

Theorem 1. If a > -1, then (2) holds for every entire function f of exponential 
type 2T such that X2a,+l (f(x) + f(-x)) belongs to LI [0, o) . Besides, the series 
on the right-hand side of (2) is absolutely convergent. 

It may be mentioned that the zeros il(a), 12(a), ...k, A(a), ... are all real 
when a is real and > -1 . 

If f is integrable on [1, X] for all X > 1 and 
x 

lim] f(x) dx 

exists, then we denote the limit by f7l0 f(x) dx and say that f is integrable in 
the sense of Cauchy on [1, xo) . If f is integrable on [I, 1] for all 4 E (0, 1) 
and 

X-ol lim] f(x) dx 

exists, then we denote the limit by f10 f(x)dx and say that f is integrable in 
the sense of Cauchy on (0, 1]. If f is integrable in the sense of Cauchy on 
[1, ox) as well as on (0, 1], then we say that f is integrable (in the sense of 
Cauchy) on (0, ox) and denote the integral by 

-*00 

J ff(x) dx. 
-0 

The question arises if in Theorem 1 it would be enough to assume the func- 
tion x2a+l (f(x) + f(-x)) to be integrable in the sense of Cauchy on (0, oo). 
The answer is no. Indeed, the function 

f()=JaQTZ)Ja+i (TZ) 
f* (z) J,l(rz)2a+l 

which was considered in [4, ?5.2] serves as a counterexample. This function is 
of exponential type 2- and is integrable in the sense of Cauchy on (0, oo); the 
value of the integral is 1 [8, p.406] whereas the right-hand side of (2) is 0. 
However, we shall prove the following 
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Theorem 2. Let a > -1 and f be an entire function of exponential type a < 2T 

such that X2a+1 (f(x) + f(-x)) is integrable in the sense of Cauchy on (O, oo). 
Then 

J x2a+1 (f(x) + f(-x)) dx 
0 

(3) 2 (ik(a)) (I ik(a) ik(a))) za+ (I() 'J(Y) ) + 
r2a+2 k= (Ja(jk(a) ))2 T T 

if the series on the right is convergent. 
The following result was also proved in [4] to which we refer the reader for 

the definition of the nodal function c. 

Theorem B. Let a > -1 . Among all quadrature formulae of the form 
00 00 

j x 2a+(f(x) + f(-x)) dx = E Akf(xk) 
k=-oo 

having co as nodalfunction, only one is validfor all entire functions of exponen- 
tial type 2T satisfying f(x) = O(1xI-) , x oo , 3 > 2a + 2. This formula 
is (2) and the associated nodal function is 

(im (at)) 
a 

JOW (TX) 
(9e X) =J' (im (at) ) X (Tx-im (a) j 

Moreover, We minimizes the integral 

x2a+l (co2(X) + C02(-x)) dx 

overall nodal functions co 
The proof of Theorem B as given in [4] allows us, in view of Theorem 1, to 

state the following 

Theorem 3. Theorem B holds if instead of "f(x) - O(IxK-6), x -. ?oo, 3 > 
2a + 2 " we assume that x2a+1 (f(x) + f(-x)) belongs to L1 [0, xc). 

As an application of Theorem 1 we prove 

Theorem 4. If f is an entire function of exponential type T such that 

(4) lxla+lf(x) E L 2(R) 

for some a > -1, then 

(5) Lx |X| fx)dx = 
T2a+2 E (JI]k(a) I)) f(Ik()) 

k#O 

where i-k(a) = -jk(a) for all k # 0. 

In the case a = -i, (5) reduces to the following well-known formula of 
Plancherel and P61ya ([7, p. 1 16, formula (52)]) 

J f(x)12 dx = - E f((2k1)| 

Here is an obvious corollary of Theorem 4. 
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Corollary 1. If f is an entire function of exponential type Xr such that (4) holds 
for some a > -1 and f vanishes at all the points 

ik(a) k - 

7r 

then f is identically zero. 

This result is to be compared with a classical theorem of F. Carlson according 
to which, if f is an entire function of exponential type < 7r and vanishes at 
the points n = 0, ? 1, +2, ... , then it is identically zero. We refer the reader 
to [2, Chapter 9] for various extentions of Carlson's theorem. It may be noted 
that in the above corollary the function is allowed to be of order 1 type 7r as 
long as (4) holds. 

Remark 1. The example (,) shows that the conclusion of the above corollary 
may not hold if (4) is not satisfied. 

Remark 2. If a function is of exponential type Xr satisfying (4), then it may not 
be identically zero unless it vanishes at all the points i , k = i1, +2. 
This is shown by the example 

(6) f(z) Ja,,(7rZ) 
(7rz)a(7rzz-jn(a)) 

where n E {?I,?2,+3,...}. 
As a special case of Theorem 4 we have 

Corollary 2. If f satisfies the conditions of Theorem 4, then 

fJn,(a)) ? (i (j)) Xj12a+ If(X) 12 
|f (j())|< r+ >(,() | I1a11(2dx) (n =1, 2,...). 

The inequality is sharp; indeed, it becomes an equality for the function de- 
fined in (6). 

2. AUXILIARY RESULTS 

Let ?*(t) be a nonnegative, nondecreasing, and convex (nonconcave) function 
of log t, with 0(0+) = 0 but 0(t) not identically zero. Further, let q(e-t) = 
0(t-1/2) as t -- +oo. It was proved by Boas [1, Theorem 2] that if f is 
regular and of exponential type c in the closed right half-plane such that for 
some u > O, A > 2, 

j{0(If(x)IP)}j' dx < x, 

then for an arbitrary increasing sequence of positive numbers Ao, A1, A2, *- 

with Ak+I -Ak > 23 > 0 we have 
00 

E{c$(et IPjf(Ok) 1} < 00 

k=0 

if c' > c . Going through the proof of this result, the reader will notice an ob- 
vious misprint in [1, Lemma 4] concerning the assumption "q(e-t) = O(t112) 
as t -- +oo ". The conditions imposed on X are clearly satisfied by +(t) = t. 
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Given a sequence AI, A2, 3,. such that AI > 0, k+I - Ak > 23 > 0, 
and a function f regular and of exponential type in the open right half-plane 
we may apply the above result of Boas to the function f(z + 2IA) taking 
+(t) = , = , A = 3 to obtain 

Lemma 1. Let {kIk} be an increasing sequence of positive numbers with Ak+I - 

Ak > 23 > 0. If f is regular and of exponential type in the open right 
half-plane such that 

JIf(x)I dx < x, 

then 
00 

E If(Pk)I < 00. 
k=I 

Hereafter, let 

(P (Z) (ihz) 

where h > 0 ( 

Lemma 2. We have 

(7) L l(x) dx < 2x . 
-00 

Besides, for a > -I and all y > O 
00 

, (Ph (Y jk+ I (a)) )-(Ph (Y jk (at)) I < Xr 

k=I 

Proof. Since (Ph is an entire function of exponential type 2h belonging to 
L1(-oo, 00), we have [2, Theorem 11.3.1] 

j(Lp(x)l dx < 2h/ koh(x)Idx = 2xr. 
-00 h-00 

I(h()Id 7 

Further, using the fundamental theorem of integral calculus, we have 
00 00 J~~~~~~~~~~fk+1i(a) 

ZPh (Yjk+ I((a)) -(Ph(YIk(a))I = ]E | (yx) dx 
k=I k=I ik(a) 

< L (x) Idx < Xr. 0 

Lemma 3 [5, ?2.2]. Let f be regular and of exponential type in the open right 
half-plane. If f is integrable in the sense of Cauchy on [1, 00), then f(x) -O 0 
as x oo, and so f(x) is boundedfor x > 1 

Lemma 4 [5, Lemma 1]. If f is integrable in the sense of Cauchy on [1, 00), 
then f1c ph(x)f(x) dx exists for all h > 0 and 

himjl h(x)f(x)dx f(x)dx 

provided f is bounded on [1, 00) 
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Lemma 4'. If f is integrable in the sense of Cauchy on (0, 1], then 

J Ph(X)f(x) dx 
-.0 

exists for all h > 0 and 

(8) lim (oh(x)f(x) dx = f(x) dx. 
h--Oj0 J-4 

Proof. For every E > 0, there exists X, > 0 such that 

j f(x) dx < e forO<xl <x2<Xe 

Hence, if F(x) fXe f(t)dt (O < x < X), then 

(9) IF(x){ < e forO<x?<X . 

Let 0 < xi < x2 < Xe,. Integration by parts gives 

J fh(x)f(x) dx = -(h(x2)F(x2) + EPh(x1)F(xl) + jX2q(x)F(x) dx, 

which by virtue of (7) and (9) implies 

(10) j| v(x)f(x)dx < 2(1+7r)e 

i.e., IfO Vh(x)f(x) dx exists for all h > O. 
Note that (10) holds for all h and so, using (9), we obtain 

J (h(x)f(x)dx - ] f(x) dx < (3+27r)e. 
_ _ 

Since 

IJ h(x)f(x) dx - J f(x) dx < e 

for all sufficiently small h, we conclude that (8) holds. a 

Remark 3. The above proof differs only in some details from that of Lemma 4 
as presented in [5]. 
Lemma 5. If f satisfies the conditions of Theorem 1, then the series on the 
right-hand side of (2) is absolutely convergent. 
Proof. Let 

Aik := jk(a) (k =1,2,...). 

Since i (a), 12(a), . jk, i(a)), . .. , are all simple, positive and (see (8, p. 506]) 

ik(at) (k + -a- 7' -8zk-a 

(4a2 - 1)(28a2 - 31) 

3847r3(k + la - 1 )3 

there exists a positive number J such that 1k+1 - Ak > 2c5. 



A QUADRATURE FORMULA WITH ZEROS OF BESSEL FUNCTIONS AS NODES 721 

According to hypothesis we have 

jI[xI2a+1If(x)+f(-x)I dx < X 

and so by Lemma 1 

k (a) f (a)) + f (_ j)) 
(12) .=0 

= Z |I'kA 12a+jf(k) + fA(-k)I < X 
k=1 

Now we recall the formula ([9, p. 368], [6, p. 198 (Lemma 14)]) 

J~(z) = _ ( 2-)1 sin (z __ r) + O ( 1 ) zE2R, z x 

It follows from ( 11) that for all large k 

lsin jk (a) - 2-4) > 

So, if k is sufficiently large (say k > K1), then 

(13) Ylrkk(a))I (Ja)( ))1/2 - (Ok1 D3) 

(13)~~~~~~~~~~~~~~~~ 

X/2 V7rk(a) 
and 

(ie (a2)) |a fik (a) ) k (a ))| 

< 27r(jk(a))2a+ f (ik(a) + f ( (a) 

Besides, Ja(jk(a)) $ 0 for all k since the positive zeros of Ja are all simple. 
Hence, in view of (12), the lemma holds. o 

3. PROOFS OF THE THEOREMS 

Proof of Theorem 1. Without loss of generality we may assume T = 7 . Then 

C/e(z) 'pC(z) (f(z) + f(-z)) (E > 0) 

is an even entire function of exponential type 2(7r + E) . 
The function Z2a+l (f(z) + f(-z)) is regular and of exponential type in 

9Me z > 0 . Besides, according to our assumption, it belongs to LI [0, ox) and 
so by Lemma 3 

X12a+1lf(X) + f(_X __-* 0 as x -oo. 
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Hence, 
jf(x) + f(-x)l = O (Ix-(2a+l)) as x -xoo, 

which implies that 

Iy,C(X)l = O(IxI-(2a+3)) as x-?oo. 

Thus the function Y/(Z) satisfies the conditions of Theorem A with 2(ir + e) 
instead of 2T. We therefore have 

f14 002a+1 (2 -(x))dx 
2 (Ik(a))2a 2 ,(jk(a) (14) ]X XYICk(2We(X,JdX = (7r + g)2a+2 E (J'(k (a)))2 'e 7r + k ) 

Next we show that for each 3 > 0 there exists Ko such that 

( 15) (ir+ e)2a+2 E ((J1(jk(a)))2YIe ( +) ) 

if e E [0, 2] In view of (11) we can choose an integer K2 such that for 
E E [0s ]2] 

(16) 2+e(ik+ I(a)1-k(a)) > 2 fork>K2. 

Let F(x) X2a+l (f(x) + f(-x)) and {k (1 < k < oo) be the smallest number 
in [k - I , k + 2] such that 

IF(WkI max IF(x)I. 
k-j <x<k+ j 

The points ,k which lie in [k - 2 k) form a subsequence {4' } and those which 
lie in [k, k+ 2] form another subsequence {f} . Obviously ' - > 
and > - 

I > and so by Lemma 1 
00 00 

j fl4n)l < 00 j fl4n)j < oo n nc 
n=1 n=1 

As such, 
00 

E jfl4k)j < oc. 
k=1 

Therefore there exists Ko > max{K1, K2} such that 
00 

8 J IF(Wk)I < 3 
k=[4Ko] 

By (13), 

2 ( e (jk(a))2 (Ik() a) 

47 I(ik(a) ) ( k=Ko 
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Because of (16), intervals of the form [k - 2, k + 2] can contain at most two 
points of the sequence {7 k } * Hence, 

7r$ + > F (F ) < 4 x 2 E IF(lk)I < 3 
k=Ko ( k=[~Ko] 

i.e., (15) holds. 
It is clear that as 6 -E 0 the function 

I 
yV6(z) tends to '~ 

(7r+e)2a+2 7s2a+2 Z V(z)+f(-z)) 

uniformly on all compact subsets of C . Hence, for any 3 > 0 and any K E N 
there exists a positive 6o depending on 3 and K such that 

(17) 2 (jk(a)) f k(a) + f k(a) 
( 7) r1t2a+2 kE (J(akC ()i))2 + 2 ZT ( ) t ( ) 3 

( 7r + g )2a+. k= (Ja' (Jk (a ) 2W (1 + e 8 

if 6 E [0, 6o] 
Now let 

1(f) j i x2a+l(f(x) + f(-x)) dx 

and 

2 ? (jk(a))2a ((Ik(a)) jk() 
Q k= 2a+2 Z((k()) 2 f I 

Then 

1I(f) - Q7r(f)I = II(f) + I(V/) -I(qi) -Qx(A 
< JI(f)-I(y)I + IQ7r(f)-I(V')I 
= lI(f) - I('V)l +. IQ7r(f) - Q,r+e(Ye)1 

where in the last step we have used (14). By Lemmas 3, 4 and 4', for each 
3 > 0 there exists el > 0 such that 

lIf)I(/s|< 6 for O< E< el 

Further, by (15), (17) and Lemma 5 we conclude that 

IQ;r(f)-Q+e(VIe)I < 33 

for all 6 E (0, min{eo, 2}) . Hence, for 6 E (0, min{6o, 2, 6i}) we have 

II(f)-Q7r(f)l < 43. 
Since 3 is an arbitrary positive number, we must have I(f) = Q,(f). This 
completes the proof of Theorem 1, since the absolute convergence of the series 
on the right-hand side of (2) has already been proved in Lemma 5. 0 

Proof of Theorem 2. The function 

/e (Z) =0 (z)(f(Z) + f(-z)) 
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satisfies the conditions of Theorem 1 for all E E (0, T- 2) and therefore I(y/) = 

QT(Y8) . From Lemmas 3, 4 and 4' it follows that 
p-.400 p-0 

1-40 X2a+1ly(X) dx - x2a+1(f(x) + f(-x)) dx as c - 0. 
e0 F0 

Let 3 be an arbitrary positive number and choose the smallest Nj such that 

|n (j(R)2a ka i(l 8| 
N -jk() f Ck(a) + f Ik(a) < 

k=, (Ja'(ik(aX) ) ) 
T T,, 

for all n > N3 . Setting 

nn-n(jk(a) )2a (a) ik (a) 

k=Nj(Ja(Jk(a))) T T 

we see that for n > Nj we have 

k=N (a))2a Ik(a)) 

-k=N( I (J)))(fk(a)))2 TJ| 

n 

(jk(a) )2 
ik(at) t ik(at) ik(at)A 

- (Dc *( + :(6 (9C(Jk)<)2 ) f -+ fD 

< (1 + i S)S 

by Lemma 2. Therefore, 

Z (ji(k(a)))2'( (Jk(a))1 < (1 + 7)3. 

The remainder of the proof is analogous to that of Theorem 1. 0 

Proof of Theorem 4. If f satisfies the conditions of Theorem 4, then applying 
Theorem 1 to the function f (z)f (-z), we get 

t00~~~~~~~0 

j00x2a+ i e( ( (X)f (x)) dx 

(18) = ~2~+2~ 2~ (j (Ik(a)) 'fI ik(a)k f) 

ws NT the rg(jh(an)) T o ( i t T. 

Theremthenserie of the proofht-hanalgosid tof that of Theoruely conergnt 
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Again, formula (2) applied to the function (f(z) + f(-z)) (f(z) + f(-z)) 
gives 

j X2,a+l f(x) + f(-X)12 dx 

?2 (Ik(a))2a f(Ik((a) + ik(a) 2 
T2a+2 kl(j'k (a) ))2J T , T, 

Now writing if(x) + f(-x)12 as If(x)J2 + jf(-x)12 + 291e(f(x)f(-x)) and 

| ik (a) ) k(a) ) 2 
f(IkT) + f( T~) 

as 

f jk()) 2 + f k(a) ) 2 
+(fk(a) f (a) 

and using (18), we obtain 

j x2a+ (lf(x)12 + If(_x)12) dx 

2 (ik (a)) Ik(a) 

T2a+2 k=1 (J'(Ik(c()) )2 K T ) 

which is equivalent to (5). 0 
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